What happens when you leave it in differnt soda pops.
<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
Answer:
Explanation:
a) ωp = 2π radians / 1.7 s = <u>3.7 rad/s</u>
b) ωs = 3.7 rad/s(9.5 cm / 4.5 cm) = 7.8 rad/s
v = (ωs)R = 7.8(65) = 507 cm/s or <u>5.1 m/s</u>
c) ωs = 3.5 m/s / 0.65 m = 5.38 rad/s
ωp = 5.38(4.5 cm / 9.5 cm) = 2.55 rad/s
t = θ/ω = 2π / 2.55 = 2.463... <u>2.5 s</u>