Car at rest:
velocity= 0m/s
Acceleration:
0.2m/s²
Since total time:
3 min = 180s
Formula of acceleration:
acceleration = [final velocity - initial velocity] ÷ [total time]
Velocity at end:
0.2m/s² = [final velocity - 0m/s] ÷ [180s]
0.2m/s² × 180s = [final velocity]
[final velocity] = 36m/s
Distance travelled:
Velocity = displacement(distance) ÷ time
36m/s = displacement(distance) ÷ 180s
displacement(distance) = 36m/s × 180s
displacement(distance) = 6480m
<em><u>Hey I'm sorry but i do not understand why the answer on your worksheet for distance travelled is 3240m... its </u></em><em><u>half</u></em><em><u> of what my answer is...</u></em>
v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ;
and solve for "v".
______________________________________________________
Explanation:
_____________________________________________________
The formula is: KE = (½) * (m) * (v²) ;
_____________________________________
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note: Velocity is similar to speed, in that velocity means "speed and direction"; however, if you "square" a negative number, you will get a "positive"; since: a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ; to solve for "(v)" ; velocity, which is very similar to the "speed";
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ; ↔ (½)*(m)* (v²) = (KE) ;
___________________________________________________
→ We have: (½)*(m)* (v²) = (KE) ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
→ We divide each side of the equation by: "[(½)* (m)]" ;
___________________________________________________
→ [ (½)*(m)*(v²) ] / [(½)* (m)] = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
to get:
______________________________________________________
→ v² = (KE) / [(½)* (m)]
→ v² = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
→ √ (v²) = √ { 2*(KE) ] / m }
________________________________________________________
→ v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"];
and solve for "v".
______________________________________________________
Answer:
a-1 Graph is attached. The relation is linear.
a-2 The corresponding height for 68 kPa Pressure is 7.54 m
a-3 The corresponding weight for 68 kPa Pressure is 1394726kg
b The original height of the column is 5.98 m
Explanation:
Part a
a-1
The graph is attached with the solution. The relation is linear as indicated by the line.
a-2
By the equation

Here
- P is the pressure which is given as 68 kPa.
- ρ is the density of the oil whose SG is 0.92. It is calculated as

- g is the gravitational constant whose value is 9.8 m/s^2
- h is the height which is to be calculated

So the height of column is 7.54m
a-3
By the relation of volume and density

Here
- ρ is the density of the oil which is 920 kg/m^3
- V is the volume of cylinder with diameter 16m calculated as follows

Mass is given as

So the mass of oil leading to 68kPa is 1394726kg
Part b
Pressure variation is given as

Now corrected pressure is as

Finding the value of height for this corrected pressure as

The original height of column is 5.98m