It's used for the intensity of a tornado
Answer:
d = 90 ft
Explanation:
As we know that after each bounce it reaches to 4/5 times of initial height
so we can say

so the distance covered is given as

here we know that
h = 10 feet



Answer:
t=L/
Explanation:
<u>solution:</u>
Let E be an observer, and B a second observer traveling with velocity
as measured by E. If E measures the velocity of an object A as
then B will measure A velocity as
=
-
Applied here,
the walkway (W) and the man (M) are moving relative to Earth (E}, the velocity of the man relative to the moving walkway is
=
-
,

The time required for the woman, traveling at constant speed
relative to the ground, to travel distance L relative to the ground is
:
t=L/
Explanation:
<em><u>Newton's First Law ,</u></em>
F = ma
a = m/F
a = 68 / 59
a = 1.15 m/s2
Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m