Power = Work done/Time taken
So, keeping this in mind,we can solve it as follows:
= 700/3.1
= 7000/31
= 225.80 W
Answer:
3 effect of oxidized lipids
4 an inflammatory response
5 the formation of plaques
Explanation:
Destruction of cells due to oxidation of lipids whereby free radicals steal electrons in cell membrane.
This occurs when tissues get injured by trauma, bacteria or toxins, thereby causing damages cells to release chemicals like histamine, brakykinn that cause vessels to leak fluid into the injured tissues causing swelling.
-plaques are regions of destroyed cells which are visible structures formed inside a cell culture.
Answer:
Possibly shape.
Explanation:
Because it is ripped in half. As you guys and the questioner can see that there is a wiggly strip down the middle. That also cause of a shape change.
I really hope my answer is right ^_^
Answer:
The power in this flow is 
Explanation:
Given that,
Distance = 221 m
Power output = 680 MW
Height =150 m
Average flow rate = 650 m³/s
Suppose we need to calculate the power in this flow in watt
We need to calculate the pressure
Using formula of pressure

Where,
= density
h = height
g = acceleration due to gravity
Put the value into the formula


We need to calculate the power
Using formula of power

Put the value into the formula


Hence, The power in this flow is 
Answer:
option C
Explanation:
the ball is moving circular around the pole
Angular momentum of the system is constant
J = I ω
now,



the rope radius is decreasing as it revolving around the pole
angular speed is inversely proportional to radius.
so, the angular speed will increase.
The correct answer is option C