A) His wagon will accelerate more.
B) His wagon will accelerate less. Both parts are answered by F=ma. Mass is inversely proportional to acceleration, and force is directly proportional to acceleration.
Gravitational acceleration, g = GM/r^2. Additionally, for a satellite in a circular orbit, g = v^2/r
Where, G = Gravitational constant, M = Mass of earth, r = distance from the center of the earth to the satellite, v = linear speed of the satellite.
Equating the two expressions;
v^2/r = GM/r^2
v = Sqrt (GM/r);
But GM = Constant = 398600.5 km^3/sec^2
r = Altitude+Radius of the earth = 159+6371 = 6530 km
Substituting;
v = Sqrt (398600.5/6530) = 7.81 km/sec = 781 m/s
Answer:
R = 5.73 m
Explanation:
For an angle of rotation through 21 degree we know that
arc length is given as
now we know that
Arc = 2.1 m
Angle = 21 degree
so now we have
This problem is to let you practice using Newton's second law of motion:
Force = (mass) x (acceleration)
-- The airplane's mass when it takes off (before it burns any of its load of fuel) is 320,000 kg.
-- The force available is (240,000 N/per engine) x (4 engines) = 960,000 N.
-- Now you know ' F ' and ' mass '. Use Newton's second law of motion to calculate the plane's acceleration.
Answer: A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel? 1. = 3m (4. = 42m. 2. ... 1,7m (46) = 7802 m. 4. A wave traveling at 230 m/sec has a wavelength of 2.1 meters. What is the frequency of.
Explanation: please give me brainlest