Answer:
2.01 M
Explanation:
Step 1: Calculate the moles of acetic acid (HC₂H₃O₂)
The molar mass of acetic acid is 60.05 g/mol. We will use this data to calculate the moles corresponding to 36.2 g of acetic acid.

Step 2: Convert the volume of solution to liters
We will use the relation 1000 mL = 1 L. We assume that the volume of solution is that of water (300 mL)

Step 3: Calculate the molarity of the solution
The molarity is equal to the moles of solute (acetic acid) divided by the liters of solution

Answer:
Weathering, Erosion
Explanation:
Plants and animals can be agents of mechanical weathering. The seed of a tree may sprout in soil that has collected in a cracked rock. As the roots grow, they widen the cracks, eventually breaking the rock into pieces. Over time, trees can break apart even large rocks.
Tree root systems have a handful of large roots that branch out into a network of smaller roots that often extend out far beyond their branches do. These root systems prevent erosion by holding the soil in place and improving drainage which helps water get absorbed into the soil instead of just running over the top.
Hope this helps
All the love, Ya boi Fraser :)
I believe it is C; reasoning being that the hint for physical change is," the producing of a gas," chemical "that's new and diff. substance. "