Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹
Answer : Option C) Early modern era
Explanation : The historical era which was marked by the beginnings of European explorations, conquests of the Americas, trans-Atlantic slave trade and the rise of a globally intertwined economy was Early modern era. It was later followed by the medieval period.
Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
The correct option is COVALENT BONDS.
A Lewis acid is defined as a substance which accept a pair of electron while a Lewis base refers to a substance that donate an unshared pair of electrons to another chemical specie with which it shared the donated pair of electrons.
Lewis acid and Lewis base react together to form salt and water. This type of reaction is called neutralization reaction. The neutralization reaction of Lewis acid and Lewis base involves electron pairs transfer, thus, there is an increase in the number of covalent bonds during this reaction.
•boiling and freezing point
•surface tension
•vapor pressure
• solid state
•liquid state
•gaseous state