Answer:
1384 kJ/mol
Explanation:
The heat absorbed by the calorimeter is equal to the heat released due to the combustion of the organic compound. C is the total heat capacity of the calorimeter and Δt is the change in temperature from intial to final:
Q = CΔt = (3576 J°C⁻¹)(30.589°C - 25.000°C) = 19986.264 J
Extra significant figures are kept to avoid round-off errors.
We then calculate the moles of the organic compound:
(0.6654 g)(mol/46.07) = 0.0144432 mol
We then calculate the heat released per mole and convert to the proper units. (The conversion between kJ and J is infinitely precise and is not involved in the consideration of significant figures)
(19986.264 J)(1kJ/1000J) / (0.0144432 mol) = 1384 kJ/mol
Answer:The easiest way to find the mass of anything is to weigh it. You're actually measuring the force of gravity on the object, and technically, you should divide the weight by the acceleration due to gravity to get the mass.
Explanation:
If you are a plato user the answer is D. vitamin E is fat soluble
<span>Assume
p=735 Torr
V= 7.6L
R=62.4
T= 295
PV-nRT
(735 Torr)(7.60L)= n (62.4Torr-Litres/mole-K)(295K)
0.30346 moles of NH3
Find moles
0.300L solution of 0.300 M HCL = 0.120 moles of HCL
0.30346 moles of NH3 reacts with 0.120 moles of HCL producing 0.120 moles of NH4+ ION, and leaving 0.18346 mole sof NH3 behind
Find molarity
0.120 moles of NH4+/0.300L = 0.400 M NH4+
0.18346 moles of NH3/0.300L = 0.6115 M NH3
NH4OH --> NH4 & OH-
Kb = [NH4+][OH]/[NH4OH]
1.8 e-5=[0.300][OH-]/[0.6115]
[OH-]=1.6e-5
pOH= 4.79
PH=9.21
.</span>
The answer is : 17.5 liters drained and replaced by 17.5 liters of 100% solution.
x = amount drained and replaced
(70-x) = remaining amount of 20% solution
<span>.20(70-x) + 1.00(x) = .40(70)
14 - .2x + 1x = 28
1x - .2x = 28 - 14
</span><span>.8x = 14
</span><span>x = 14/.8
x= 17,5 ( 17.5 liters drained and replaced by 17.5 liters of 100% solution)
</span>