Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!
Answer:
Nice and you
Explanation:
Please Mark me brainliest
Answer:
According to avogadro's law, 1 mole of every substance contains avogadro's number
of particles and weighs equal to its molecular mass.
To calculate the moles, we use the equation:
a. moles in 14.08 g of
= 
molecules in 14.08 g of
= 
b. moles in 17.75 g of NaCl = 
molecules in 17.75 g of
= 
formula units 17.75 g of
= 
c. moles in 20.06 g of
= 
formula units in 20.06 g of
= 
#1
Moles of Oxygen =3
Molecules:-
- 3×Avagadro no
- 3(6.022×10²³)
- 18.066×10²³
- 1.8066×10²²molecules
#2
Its because according to law of conservation of mass- Mass is neither created nor destroyed
AS ITS BALANCED SO BOTH SIDES ARE SAME .
HENCE THEY OBEY
The age of the fossil given the present amount of Carbon-14 is given in the equation,
A(t) = A(o)(0.5)^t/h
where A(t) is the current amount, A(o) is the initial amount, t is time and h is the half-life. Substituting the known values to the equation,
A(t) / A(o) = 0.125 = (0.5)^(t/5730)
The value of t from the equation is 17190.
Thus, the age of the fossil is mostly likely to be 17190 years old.