The total mechanical energy of the system at any time t is the sum of the kinetic energy of motion of the ball and the elastic potential energy stored in the spring:

where m is the mass of the ball, v its speed, k the spring constant and x the displacement of the spring with respect its rest position.
Since it is a harmonic motion, kinetic energy is continuously converted into elastic potential energy and vice-versa.
When the spring is at its maximum displacement, the elastic potential energy is maximum (because the displacement x is maximum) while the kinetic energy is zero (because the velocity of the ball is zero), so in this situation we have:

Instead, when the spring crosses its rest position, the elastic potential energy is zero (because x=0) and therefore the kinetic energy is at maximum (and so, the ball is at its maximum speed):

Since the total energy E is always conserved, the maximum elastic potential energy should be equal to the maximum kinetic energy, and so we can find the value of the maximum speed of the ball:


his displacements are given as
East
North
now we can find the direction of displacement by using the concept



magnitude of displacement is given as



<em>so the displacement is 17 km at angle 28.1 degree North of East</em>
Wood, wind, sunshine,geothermal energy, biomass and water
Answer:35.2 ft
Explanation:
Given
height of stick =4 ft
shadow length =2.8 ft
Angle of elevation of sun is

let the height of tree be h
as
will remain same thus


h=35.2 ft
Answer:
t = 6.09 seconds
Explanation:
Given that,
Speed, v = 44.1 cm/s
Distance, d = 269 cm
We need to find the time interval of the marble. Speed is distance per unit time.

Hence, the time interval of the marble is 6.09 seconds.