Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Answer:
I think the answer is True
A horizontal line on a speed/time graph means a constant speed.
Complete question:
A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa
Answer:
The average pressure exerted on the surface by the block is 9655.17 Pa
Explanation:
Given;
density of the lead, ρ = 1.13 x 10⁴ kg/m³
mass of the lead block, m = 20 kg
surface area of the area of the block, A = 2.03 x 10⁻² m²
Determine the force exerted on the surface by the block due to its weight;
F = mg
F = 20 x 9.8
F = 196 N
Determine the pressure exerted on the surface by the block
P = F / A
where;
P is the pressure
P = 196 / (2.03 x 10⁻²)
P = 9655.17 N/m²
P = 9655.17 Pa
Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa
Answer:
a dog walking or their phone rings or heard a neighbor talking to them