1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
3 years ago
13

A block of weight mg sits on an inclined plane as shown in (Figure 1) . A force of magnitude F1 is applied to pull the block up

the incline at constant speed. The coefficient of kinetic friction between the plane and the block is μ.What is the total work WfricWfricW_fric done on the block by the force of friction as the block moves a distance LLL up the incline? Express the work done by friction in terms of any or all of the variables μμmu, mmm, ggg, θθtheta, LLL, and F1F1F_1.
Physics
1 answer:
svlad2 [7]3 years ago
4 0

Answer:

W = (F1 - mg sin θ) L,   W = -μ  mg cos θ L

Explanation:

Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane

Y Axis  

       N - W_{y} =

       N = W_{y}

X axis

       F1 - fr - Wₓ = 0

       fr = F1 - Wₓ

Let's use trigonometry to find the components of the weight

     sin θ = Wₓ / W

     cos θ = W_{y} / W

      Wₓ = W sin θ

      W_{y} = W cos θ

We substitute

      fr = F1 - W sin θ

Work is defined by

        W = F .dx

        W = F dx cos θ

The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1

         

        W = -fr x

        W = (F1 - mg sin θ) L

Another way to calculate is

         fr = μ N

         fr = μ W cos θ

the work is

         W = -μ  mg cos θ L

You might be interested in
WHICH ONE!!! ASAP FOR A RETAKE FOR SCIENCE PLS
aleksandr82 [10.1K]
I’m 95% sure it’s covalent bonds.
8 0
3 years ago
E)
guapka [62]

Answer:

Pressure, P = 32666.66 Pa

Explanation:

It is given that,

Surface area of foot of Bimaba is 150 cm² or 0.015 m².

Her weight is 50 kg

We need to find the pressure does she exert on the ground, as she stands on  her one foot. The force acting per unit area is called pressure. It can be given by :

P=\dfrac{F}{A}\\\\P=\dfrac{mg}{A}\\\\P=\dfrac{50\times 9.8}{0.015}\\\\P=32666.66\ Pa

So, the pressure is 32666.66 Pa.

7 0
3 years ago
Wat is the meaning of inference?
VladimirAG [237]

The meaning of inference is the process of inferring  something and it is a noun


5 0
3 years ago
Read 2 more answers
In a nuclear physics experiment, a proton (mass 1.67×10^(−27)kg, charge +e=+1.60×10^(−19)C) is fired directly at a target nucleu
Arte-miy333 [17]

The given question is incomplete. The complete question is as follows.

In a nuclear physics experiment, a proton (mass 1.67 \times 10^(-27)kg, charge +e = +1.60 \times 10^(-19) C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed 2.50 \times 10^6 m/s. The proton comes momentarily to rest at a distance 5.31 \times 10^(-13) m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are 5.31 \times 10^{-13} m apart?

Explanation:

The given data is as follows.

Mass of proton = 1.67 \times 10^{-27} kg

Charge of proton = 1.6 \times 10^{-19} C

Speed of proton = 2.50 \times 10^{6} m/s

Distance traveled = 5.31 \times 10^{-13} m

We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.

  (K.E + P.E)_{initial} = (K.E + P.E)_{final}

 (\frac{1}{2} m_{p}v^{2}_{p}) = (\frac{kq_{p}q_{t}}{r} + 0)

where,    \frac{kq_{p}q_{t}}{r} = U = Electric potential energy

     U = (\frac{1}{2}m_{p}v^{2}_{p})

Putting the given values into the above formula as follows.

        U = (\frac{1}{2}m_{p}v^{2}_{p})

            = (\frac{1}{2} \times 1.67 \times 10^{-27} \times (2.5 \times 10^{6})^{2})

            = 5.218 \times 10^{-15} J

Therefore, we can conclude that the electric potential energy of the proton and nucleus is 5.218 \times 10^{-15} J.

4 0
3 years ago
Calculate the mass of a liquid with a density of 2.5 g/ml and a volume of 15ml
Nana76 [90]
Using the density equation and clearing mass:

\rho = \frac{m}{V}\ \to\ m = \rho\cdot V = 2.5\frac{g}{mL}\cdot 15\ mL = \bf 37.5\ g
3 0
3 years ago
Other questions:
  • A person's height will increase from birth until about age 25, and it may decrease starting at about age 70. This is an example
    6·2 answers
  • What is question 22?
    6·2 answers
  • Jonah rode his skateboard 350 meters down a straight road at a constant velocity. He skated
    8·1 answer
  • Determine the amount of potential energy of a 5 newton book that is moved to three different shelves on a bookcase. The height o
    11·1 answer
  • Laws that implemented the consumers' right to be informed forbid __________.
    12·2 answers
  • one layer of earth's atmosphere is called the stratosphere. At one point above earth's surface the stratosphere extends from an
    14·2 answers
  • ٠Light bulb A is rated at 60 W and light bulb B is rated at 100 W. Both are designed to operate at 110 V. Which statement is cor
    6·1 answer
  • Anthony and Sissy are participating in the "Roll-a-Rama" rollerskating dance championship. While 75.6 kg Anthony rollerskates ba
    14·1 answer
  • Is there a "real" simple machine that has an efficiency of 100%?
    9·1 answer
  • Which statement about metals is true?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!