Answer:
ρ_air = 0.15544 kg/m^3
Step-by-step explanation:
Solution:-
- The deflated ball ( no air ) initially weighs:
m1 = 0.615 kg
- The air is pumped into the ball and weight again. The new reading of the ball's weight is:
m2 = 0.624 kg
- The amount of air ( mass of air ) pumped into the ball can be determined from simple arithmetic between inflated and deflated weights of the ball.
m_air = Δm = m2 - m1
m_air = 0.624 - 0.615
m_air = 0.009 kg
- We are to assume that the inflated ball takes a shape of a perfect sphere with radius r = 0.24 m. The volume of the inflated ( air filled ) ball can be determined using the volume of sphere formula:
V_air = 4*π*r^3 / 3
V_air = 4*π*0.24^3 / 3
V_air = 0.05790 m^3
- The density of air ( ρ_air ) is the ratio of mass of air and the volume occupied by air. Expressed as follows:
ρ_air = m_air / V_air
ρ_air = 0.009 / 0.05790
Answer: ρ_air = 0.15544 kg/m^3
Answer:
Dot product. ... In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used and often called "the" inner product (or rarely projection product) of Euclidean space even though it is not the only inner product that can be defined on Euclidean space; see also inner product space.
Step-by-step explanation:
Answer:
yes you did that correctly
Answer:
TUP and PUQ
Step-by-step explanation:
Adjacent angles share a common vertex and common side, but don't overlap.