Answer:
Explanation:
Centripetal acceleration's equation is:
where v is the velocity of the object (moon II) and r is the radius. We have the radius, but we don't have the velocity, and we can't solve for acceleration until we do have it. Assuming moon II is a circle, or close enough to be called a circle, it has a circumference.
C = 2πr. If we can find the circumference of the circle, we can plug in the orbital period for the time, the circumference for the distance, and solve for velocity in d = rt. So let's do that and see what happens.
C = 2(3.14)(9.0 × 10⁷) and
C = d = 5.7 × 10⁸. Plugging in and solving for v:
and
v = 1.9 × 10³. That is the velocity we can use in the centripetal acceleration equation.
and
These are fun!
Force=mass•acceleration
F=ma
15 N= 5kg•a
/5 =. /5
3= acceleration?
Answer:
C
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces
I hope this helps a little bit
Answer:
The asteroid belt is a region of our solar system, between the orbits of Mars and Jupiter, in which many small bodies orbit our sun.
Explanation:
Hope this helps!
Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.