Answer:
66 km
Explanation:
Given that:
The speed of the two trains = 33 km/h
The speed of the bird = 60 km/h
The distance apart between the two trains = 60 km
From the given information, we are being told that the two trains are going at the same speed. Therefore, they will definitely collide at 30 km
We know that:
speed of the train = distance traveled × time
Making the time t the subject of the formula:
time = speed of the train / distance traveled
time = 30 km / 33 km/h
time = 0.909 / hr
Thus, the bird flying at a given speed of 60 km/h in a time of 0.909 / hr will cover a total distance of :
distance (d) = speed of the bird/ time
distance (d) = 
distance (d) = 66 km
Current = (voltage) / (resistance)
= (150 volts) / (48,000 ohms)
= 3.125 milliamperes
I don't know what you mean when you say he "jobs" the other ball, and the answer to this question really depends on that word.
I'm going to say that the second player is holding the second ball, and he just opens his fingers and lets the ball <u><em>drop</em></u>, at the same time and from the same height as the first ball.
Now I'll go ahead and answer the question that I've just invented:
Strange as it may seem, <em>both</em> balls hit the ground at the <em>same time</em> ... the one that's thrown AND the one that's dropped. The horizontal speed of the thrown ball has no effect on its vertical acceleration, so both balls experience the same vertical behavior.
And here's another example of the exact same thing:
Say you shoot a bullet straight out of a horizontal rifle barrel, AND somebody else <em>drops</em> another bullet at exactly the same time, from a point right next to the end of the rifle barrel. I know this is hard to believe, but both of those bullets hit the ground at the same time too, just like the baseballs ... the bullet that's shot out of the rifle and the one that's dropped from the end of the barrel.
The latitude and longitude for Washington D.C. is 38.9072° N, 77.0369° W.
I believe the correct answer is atmosphere (D).