The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
Answer:
hi there!
the correct answer to this question is: 6.67 mph
Explanation:
you convert minutes to hours
10 miles * 60 mins / 90 mins
Answer: the block at the right lands first
Explanation:
Answer:
a = 6 [m/s^2]
Explanation:
In order to calculate the acceleration of the skier, the following expression of kinematics must be used:
a = (v)/t
where:
v = velocity = 24 [m/s]
t = time = 4 [s]
a = 24/4 = 6 [m/s^2]