Height (y) = 36t - 16t^2, where t = time in seconds (s).
Our height (y) after 1s = 36(1) - 16(1)^2
y = 36 - 16 = 20 ft
So it reached a height of 20 ft during that 1 second, which means that at that 1 second it had a velocity of 20ft/s, since v = d(distance)/t = 20ft/1s
Stars<span> are powered by </span>nuclear fusion<span> in their cores, mostly converting hydrogen into helium. The production of new elements via </span>nuclear<span> reactions is called nucleosynthesis. A </span>star's<span> mass determines what other type of nucleosynthesis </span>occurs<span> in its core (or during explosive changes in its life cycle). READ THIS AND YOU WILL UNDERSTAND I THINK IS TRUE </span>
The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1