Answer: The results of Rutherford's gold foil experiment gave him the evidence to arrive at two conclusions: (1) an atom was much more than just empty space and scattered electrons and (2) an atom consists of a positive charge at the center where most of its mass is placed.
Explanation:
Ernest Rutherford performed an experiment in which he passed alpha particles through a thin gold foil sheet. Through this sheet some of the particles passed on to the other side but some of them were reflected back.
This experiment was done by Rutherford to prove than an atom contains a tiny and heavy nucleus. He concluded that an atom has more than empty space and electrons were present in scattered form.
Also, he concluded that an atom consists of a positive charge at the center where most of its mass is placed.
Thus, we can conclude that the results of Rutherford's gold foil experiment gave him the evidence to arrive at two conclusions: (1) an atom was much more than just empty space and scattered electrons and (2) an atom consists of a positive charge at the center where most of its mass is placed.
The required mass of calcium bromide is 35.98 grams.
<h3>What is molarity?</h3>
Molarity is any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V, where
- M = molarity = 4M
- V = volume = 45mL = 0.045L
Moles will be calculated by using the above equation as:
n = (4)(0.045) = 0.18 mole
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Mass of CaBr₂ = (0.18mol)(199.89g/mol) = 35.98g
Hence required mass of CaBr₂ is 35.98 grams.
To know more about molarity, visit the below link:
brainly.com/question/22283918
#SPJ1
Answer:
Metal has an high capacity, which allows it to heat up faster and transfer the heat to the contents of the pot or pan.
Explanation:
Because metal pots are made from a narrow range of metals because pots and pans need to conduct heat well.
|F| = 112 - 67 = 45 N
F = 45 N ( to the left)
Answer:
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
Darmstadtium
Roentgenium
Copernicium
Explanation:
all of those are transition metals lol