Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
Answer:
This is because the air outside is always cooler than the air inside, so after staying outside your body adapts to the cold air, when you come back inside, the cold air is still in you which makes the room seem warmer.
The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
The situation (heat going through the ceiling) describes
conduction ... heat going from one place to another by
soaking through some material.
A). This is the one. Heat goes from from the marshmallow
to your hand by soaking through the wire. This is conduction too.
B). No. The heat in the room goes from the floor to the ceiling
because the warm air rises and carries it there. This is convection.
C). No. There's nothing for the heat to soak through between
the sun and the roof, and nothing that can move from the sun
to the roof and bring the heat with it. This is radiation.
D). No. Cold water sinks from the surface to the bottom because
warm water rose from the bottom to the surface, taking heat with it.
This is convection.