In this case, the population has exceeded the available food, thus causing a decline in the population.
<h3>What is carrying capacity?</h3>
It is the maximum population size that an ecosystem can sustain based on the resources that it has.
Above the carrying capacity, resources become extremely limited and competition becomes stiff in the population. Thus, the population declines.
Below the carrying capacity, resources are abundant and the population grows. Most of the time, a mature population hovers around the carrying capacity of the ecosystem.
More on carrying capacity can be found here: brainly.com/question/797991
#SPJ1
Answer: 
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.

The equation can be written in terms of ions as:

Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The ions which are present on both the sides of the equation are potassium and nitrate ions and hence are not involved in net ionic equation.
Hence, the net ionic equation is :

Balanced chemical equation is :

It is given that the equation is in equilibrium.
We need to find what will happen if we add more
is added .
By Le Chatelier's principle :
Changing the concentration of a chemical will shift the equilibrium to the side that would counter that change in concentration.
It means production of the side where content is added will decrease and concentration on other side will increase .
So , more NO would form .
Therefore, option B. is correct.
Hence, this is the required solution.
There are 1.2 hr would this current have to be applied to plate out 7. 20 g of iron .
Calculation ,
Given ; Current ( I ) = 5. 68 A
In
, the valancy of Fe is +2 .
2 moles of
are required for the decomposition of 1 mole of Fe .
7. 20 g of Fe in moles = 7. 20 g /55.845 g/mol =0.12 mole
x moles of
are required for the decomposition of 0.128 mole of Fe .
moles of
are required = 0.256 moles
Charge on 1 mole of
= 96500 C
Charge on 0.256 mole of
= 24704 C
Current ( I )= Q/t
t =Q / I = 24704 C/5. 68 A = 4349 sec = 1.2 hr
Therefore , there are 1.2 hr would this current have to be applied to plate out 7. 20 g of iron .
To learn more about iron
brainly.com/question/18500540
#SPJ4
Answer:
i think it<em> MIGHT</em> be D
Explanation: