The formula to be used for this problem is as follows:
E = hc/λ, where h is the Planck's constant, c is the speed of light and λ is the wavelength. Also 1 aJ = 10⁻¹⁸ J
0.696×10⁻¹⁸ = (6.62607004×10⁻³⁴ m²·kg/s)(3×10⁸ m/s)/λ
Solving for λ,
λ = 2.656×10⁻⁷ m or <em>0.022656 nm</em>
A becuase that is the one that is also b becuase a and c
Answer:
Here's what I get
Explanation:
1. Complete structural formula
Methylpropane consists of a chain of three carbons with another carbon atom attached to the middle carbon. Enough H atoms are added to give each C atom a total of four bonds.
The complete structural formula is shown below (There is a C atom at each intersection).
2. Condensed structural formula
A condensed structural formula is designed to be typed on one line.
The molecule has three CH₃ groups attached to a single carbon atom, so the condensed structural formula is
(CH₃)₃CH
The formula is also often written CH₃CH(CH₃)CH₃ and as (CH₃)₂CHCH₃.
Answer:
8.70 liters
Explanation:
First we <u>convert 36.12 g of AI₂O₃ into moles</u>, using its <em>molar mass</em>:
- 36.12 g ÷ 101.96 g/mol = 0.354 mol AI₂O₃
Then we <u>convert AI₂O₃ moles into O₂ moles</u>, using the stoichiometric coefficients of the reaction:
- 0.354 mol AI₂O₃ *
= 0.531 mol O₂
We can now use the <em>PV=nRT equation</em> to <u>calculate the volume</u>, V:
- 1.4 atm * V = 0.531 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 280.0 K
Answer: For every one mole of Ca used in this reaction, two mols of H20 are used, one mole of Ca(OH)2 is formed, and one mole of H2 is formed.
Explanation: Once the equation is balanced, you can get the ratio from the coefficients. If you are looking at the ratio of Ca to H2O, the ratio is 1:2; Ca to H2 1:1.