Answer:
It depends if they have the same lightbulb in them.
Explanation:
Answer:

It will take 10 seconds to travel 200m at a speed of 10m/s
Explanation:
HOPE THAT THIS IS HELPFUL.
HAVE A GREAT DAY.
Answer: A <u>Nebula </u>is left behind. A spectacular explosion in which a star ejects most of its mass in a violently expanding cloud of debris.
Hope this helps!
Explanation:
(10) Mass of a soccer player, m = 0.42 kg
Initial speed, u = 0
Final speed, v = 32.5 m/s
Time, t = 0.21 s
We need to find the force that sends soccer ball towards the goal.
Force, F = ma

So, 65 N of force soccer ball sends towards the goal.
(11) Mass of the satellite, m = 72,000 kg
Initial speed, u = 0 m/s
Final speed, v = 0.63 m/s
Time, t = 1296 s
We need to find the force is exerted by the rocket on the satellite.
Force, F = ma

So, 35 N of the force is exerted by the rocket on the satellite.
Hence, this is the required solution.
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.