There seems to be a flaw with this question because it says that there are five x-intercepts but the given information only gives you 4 x-intercepts to work with.
Even means the graph is symmetric about the y-axis
The best answer is <span>A.(–6, 0), (–2, 0), and (0, 0)
because you do not have to worry about another point (0,0). Plus we need (-6,0) for it to be symmetric with (6,0).
Consider function f(x) = x²(x-6)(x+6)(x+2)</span>²(x-2)<span>². It is even and fits these conditions as it has x-intercepts at (6,0), (-6,0), (-2,0), (2,0), and (0,0). again, the question does not tell us the fifth x-intercept, so we need to assume that there is another one that needs to be there...and so (-2,0) must have (2,0) for it to be even as well.</span>
To prove a similarity of a triangle, we use angles or sides.
In this case we use angles to prove
∠ACB = ∠AED (Corresponding ∠s)
∠AED = ∠FDE (Alternate ∠s)
∠ABC = ∠ADE (Corresponding ∠s)
∠ADE = ∠FED (Alternate ∠s)
∠BAC = ∠EFD (sum of ∠s in a triangle)
Now we know the similarity in the triangles.
But it is necessary to write the similar triangle according to how the question ask.
The question asks " ∆ABC is similar to ∆____. " So we find ∠ABC in the prove.
∠ABC corressponds to ∠FED as stated above.
∴ ∆ABC is similar to ∆FED
Similarly, if the question asks " ∆ACB is similar to ∆____. "
We answer as ∆ACB is similar to ∆FDE.
Answer is ∆ABC is similar to ∆FED.
Answer:
6.50
Step-by-step explanation:
$10.00-$3.50=$6.50
JK= 8, because x+3= 2x-5= 19
Answer: 14.6
Step-by-step explanation:
I made a square around the triangle which I then counted the squares, found the Pythagorean theorem, and then added the missing sides together