Answer:
8.354 nanometers
Explanation:
To treat a diffusive process in function of time and distance we need to solve 2nd Ficks Law. This a partial differential equation, with certain condition the solution looks like this:

Where Cs is the concentration in the surface of the solid
Cx is the concentration at certain deep X
Co is the initial concentration of solute in the solid
and erf is the error function
Then we solve right side,

And we need to look up the inverse error function of 0.001964 resulting in: 0.00174055
Then we solve for x:

1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.
<h2>Answer:</h2>

<h2>Explanations</h2>
The complete balanced equation for the given reaction is expressed as;

Given the following parameters
Mass of CH4 = 5.90×10^−3 g = 0.0059grams
Determine the moles of methane

According to stoichimetry, 1 mole of methane produces 2 moles of water, hence the moles of water required will be:

Determine the mass of water produced

Therefore the mass of water produced from the complete combustion of 5.90×10−3 g of methane is 1.33 * 10^-2grams
The intermolecular forces, such as hydrogen bonds or van der Waals attractions, which draw one molecule to its neighbors, govern a substance's physical properties. Due to the relatively weak intermolecular forces of attraction, molecular substances typically take the form of gases, liquids, or low melting point solids.
<h3>How do the intermolecular forces affect physical properties?</h3>
The forces that bind two molecules together are known as intermolecular forces. Intermolecular forces have an impact on physical properties. Strong and weak forces both exist; the stronger the force, the more energy is needed to separate the molecules from one another. As intermolecular forces increase melting, boiling, and freezing points rise.
The following intermolecular forces are listed in order of strength:
- Van der Waals dispersion forces
- Van der Waals dipole-dipole interactions
- Hydrogen bonding
- Ionic bonds
It would take very little energy to separate two molecules if they are connected by van der Waals dispersion forces. On the other hand, it requires a lot more energy to separate two molecules that are joined together by ionic bonds.
To know more about molecules refer to: brainly.com/question/1819972
#SPJ1