Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Answer:

Explanation:
In a uniform circular motion, since a complete revolution represents 2π radians, the angular velocity, which is defined as the angle rotated by a unit of time, is given by:

Here T is the period, that is, the time taken to complete onee revolution:

Replacing (2) in (1):

Answer:
714.285s
Explanation:
use relative velocity
8-4.5 = 3.5m/s
x = 2500m
2500/3.5 = 714.285s = 700s (with sig figs)
Answer:
to have an accurate measure
Explanation: