Answer:
24°
Explanation:
sin(34°)/sin(x)=v2/v1
x=arcsin(2,1*sin(34°)/2,8)=24°
Inertia is that quantity which depends solely upon mass. The more mass, the more inertia. Momentum is another quantity in Physics which depends on both mass and speed.
I believe the answer is C. It will maintain its state of motion
Answer:
a) A = 0.603 m
, b) a = 165.8 m / s²
, c) F = 331.7 N
Explanation:
For this exercise we use the law of conservation of energy
Starting point before touching the spring
Em₀ = K = ½ m v²
End Point with fully compressed spring
=
= ½ k x²
Emo = 
½ m v² = ½ k x²
x = √(m / k) v
x = √ (2.00 / 550) 10.0
x = 0.603 m
This is the maximum compression corresponding to the range of motion
A = 0.603 m
b) Let's write Newton's second law at the point of maximum compression
F = m a
k x = ma
a = k / m x
a = 550 / 2.00 0.603
a = 165.8 m / s²
With direction to the right (positive)
c) The value of the elastic force, let's calculate
F = k x
F = 550 0.603
F = 331.65 N
Answer : The equilibrium concentration of T(g) is 0.5 M
Solution :
Let us assume that the equilibrium reaction be:
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[Z][X]^2}{[R][T]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BZ%5D%5BX%5D%5E2%7D%7B%5BR%5D%5BT%5D%5E2%7D)
where,
= equilibrium constant = 16
[Z] = concentration of Z at equilibrium = 2.0 M
[R] = concentration of R at equilibrium = 2.0 M
[X] = concentration of X at equilibrium = 2.0 M
[T] = concentration of T at equilibrium = ?
Now put all the given values in the above expression, we get:
![16=\frac{(2.0)\times (2.0)^2}{(2.0)\times [T]^2}](https://tex.z-dn.net/?f=16%3D%5Cfrac%7B%282.0%29%5Ctimes%20%282.0%29%5E2%7D%7B%282.0%29%5Ctimes%20%5BT%5D%5E2%7D)
![[T]=0.5M](https://tex.z-dn.net/?f=%5BT%5D%3D0.5M)
Therefore, the equilibrium concentration of T(g) is 0.5 M