Answer:
The final position made with the vertical is 2.77 m.
Explanation:
Given;
initial velocity of the ball, V = 17 m/s
angle of projection, θ = 30⁰
time of motion, t = 1.3 s
The vertical component of the velocity is calculated as;

The final position made with the vertical (Yf) after 1.3 seconds is calculated as;

Therefore, the final position made with the vertical is 2.77 m.
Answer:
(a) x0 = 0m and y0 = 49.0m
(b) Vox = 15.0m/s Voy = 0m/s
(c) Vx = Vo = 15.0m/s and Vy = -gt
(d) X = 15.0t and y = 49.0 - 4.9t²
(e) t = 3.16s
(f) Vf = 34.4m/s
Explanation:
Answer:
<h3> 1.40625m/s²</h3>
Explanation:
Using the equation of motion expressed as v = u+gt where;
v is the final velocity of the ball
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Given
u = 9m/s
v = 0m/s
t = 6.4s
Required
acceleration due to gravity g
Since the rock is thrown up, g will be a negative value.
v = u+(-g)t
0 = 9-6.4g
-9 = -6.4g
6.4g = 9
divide both sides by 6.4
6.4g/6.4 = 9/6.4
g = 1.40625m/s²
Hence the acceleration due to gravity on the planet is 1.40625m/s²
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.