Answer:
Part (i)
Z = 39.06 ohm
Part (ii)
R = 21.7 ohm
Explanation:
a) here we know that
maximum value of EMF = 125 V
maximum value of current = 3.20 A
now by ohm's law we can find the impedence as

now we will have

Part b)
Now we also know that


now we have


The 78g box, since it has less weight, would accelerate faster. If you had a frictionless surface, and you conducted this experiment, both boxes, without any outside forces, would accelerate at the same rate forever. However, in this problem we must assume the surface is not frictionless. Friction is determined by weight; the more weight, the more friction. Since the 78g box has less weight, it has less friction, making it easier to push with less force.
Answer:
A) ( - 200t + 40 ) volts
B) b) anticlockwise , c) anticlockwise , d) clockwise , e) clockwise
Explanation:
Given data:
magnetic flux (Φm) = 5.0t^2 − 2.0t
number of turns = 20
<u>a) determine induced emf </u>
E = - N 
= - N ( 10t - 2 ) = - 20 ( 10t - 2 )
= - 200t + 40 volts
<u>b) Determine direction of induced current </u>
i) at t = 0
E = - 0 + 40 ( anticlockwise direction )
ii) at t = 0.10
E = -20 + 40 = 20 ( anticlockwise direction )
iii) at t = 1
E = - 200 + 40 = - 160 ( clockwise direction)
iv) at t = 2
E = -400 + 40 = - 360 ( clockwise direction )
Answer:
áp dụng công thức í, mình thấy câu này có rắc rối gì đâu
The correct answer is B the total velocity is equal at both landing and launch because before your about launch you have 0 velocity then when you have landed you also have 0 velocity. Hope This Helps