Answer:
<h2>a</h2><h2> move with an increasing velocity</h2>
well it depends on the wind and gravity and the side the chickens on and the amount of force but if its a simple question then it doesnt roll at all or it rolls forward
Answer:
i honestly don't know
Explanation:
but can you help me with a question
Answer: D
Explanation:
Atomic weight is measured by adding the number of protons and neutrons in an atom's nucleus. Argon's atomic number is 18 while potassium's is 19. This means that Argon will always have 18 protons while potassium will always have 19 protons.
To make the numbers easier to work with, round each atomic weight. We'll say the atomic weight of potassium is 39 and the atomic weight of argon is 40. To see how many neutrons each one has, I can set up a simple equation for each using the following equation:
Atomic weight = protons + neutrons
Potassium:
39 = 19 + N --> N = 20
Argon:
40 = 18 + N --> N = 22
An atom is defined by the number of protons it has, but the number of neutrons can vary. We call these isotopes, or atoms with the same number of protons but a different number of neutrons. As the math shows, argon typically has more neutrons per atom than potassium does.
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find
