Gravitational acceleration is approx 9.8 m/s
Time is 7s
a=9.8 m/s
t=7s
a = d/t^2
therefore:
d = a * t^2
d = 9.8 * 7^2
d = 9.8 * 49
d = 480.2 [m]
Answer:
The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus.
Explanation:
The average speed of gas molecules is given by:

R is the gas constant, T is the temperature and M the molar mass of the gas.
We know that a water molecule has a mass that is 18 times that of a hydrogen atom:

So, we have:

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus:

The weight of the box is <em>w</em> = <em>mg</em>, where <em>m</em> is the mass. So
<em>m</em> = <em>w</em>/<em>g</em> = (3893.40 N) / (9.80 m/s²) ≈ 397 kg
Then the box has density
(397 kg)/(4.60 m³) ≈ 86.4 kg/m³
which is less than the density of the given liquid, so the box will float.
Answer:
v = 876 m/s
Explanation:
It is given that,
Number of mol of Neon is 2 mol
Temperature, T = 308 K
Mass, m = 0.02 kg
Value of R - 8.31 J/mol-K
We need to find the average velocity of atoms in 2.00 mol of neon. Neon is a monoatomic gas. Let v is the velocity. So,

So, the correct option is (B).