Answer:
the magnitude of the charge Q on each plate is 
Explanation:
Given that :
mass (m) = 
charge (q) = +0.155 µC = 
angle 
Area A on each plate = 0.0135 m²
From the diagram below;
----- equation (1)
Also by using Gauss Law ;

----- equation (2)
Combination equation 1 and 2 together ; we have



Answer:
The average velocity is 0.15 m/s
Explanation:
Use the definition of average velocity as the distance traveled divided the time it took.
Since the movement was on the plane from the origin (0, 0) to the point (-30, 20) corresponding to 30 m west and 20 m north, we calculate the distance using the distance between two points on the plane:

Then the magnitude of the average velocity can be estimated via the quotient between distance divided time, but since the units required are meters per second, we first convert the four minute time into seconds: 4 * 60 = 240 seconds.
Then the average velocity becomes:

Answer:
A = 5.6μs
B = 178.57kHz
C = 2.8μs
Explanation:
A. It takes ¼ of the period of the circuit before the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor.
t = T/4
T = 4*t
T = 4 * 1.4 = 5.6μs
B. f = 1/T
Frequency is the inverse of period
f = 1 / 5.6*10⁻⁶
f = 178571.4286Hz
f = 178.57kHz
C. time taken for maximum energy to occur is T/2
t = 5.6 / 2 = 2.8μs