1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
3 years ago
7

How much time is needed to push a 5,000 N car 50 meters if you are using a machine with a power of 4,500 W?

Physics
1 answer:
Dafna1 [17]3 years ago
8 0

Answer:

55.56

Explanation:

5000N * 50 = 250000/4500= 55.55555555 or 55.56

You might be interested in
A net force of +15 N changes the momentum of an object by +100 kg-m/s. What is the time over which the force is applied? (please
sattari [20]
As momentum / time = force
so; time = 100÷15

so your answer is 6.7 !!
3 0
3 years ago
A flat uniform circular disk (r= 2.00m,
dusya [7]

Incomplete question.The Complete question is here

A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.

a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.

b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.

Answer:

(a)ω = 1 rad/s

(b)t = 2.41 s

Explanation:

(a) initial angular momentum = final angular momentum  

0 = L for disk + L............... for runner

0 = Iω² - mv²r ...................they're opposite in direction

0 = (MR²/2)(ω²) - mv²r ................where is ω is angular speed which is required in part (a) of question

0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)

0=200ω²-200

200=200ω²

ω = 1 rad/s

b.)

lets assume the "starting point" is a point marked on the disk.

The person's angular speed is  

v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s

As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.

(angle) + (angle disk turns) = 2π

(1.6 rad/s)(t) + ωt = 2π

t[1.6 rad/s + 1 rad/s] = 2π

t = 2.41 s

6 0
3 years ago
A certain runner averages 4.1 m/s over a 10
Ghella [55]

Answer: 40.650406504065 or 40 minutes and 39 seconds.

Explanation:

1 k = 1000m

race = 10000m

runner time = 10000 / 4.1

runner time = 2439.0243902439024 seconds

runner time = 2439.0243902439024/60 = 40.650406504065 or 40 minutes and 39 seconds.

6 0
3 years ago
Applying newton's version of kepler's third law (or the orbital velocity law) to the a star orbiting 40,000 light-years from the
Ugo [173]

Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.

<h3></h3><h3>What is orbital velocity law?</h3>

The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.

In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.

To know more about orbital velocity law, refer brainly.com/question/11353717

#SPJ4

5 0
1 year ago
A zero-order reaction has a constant rate of 2.30×10−4 M/s. If after 80.0 seconds the concentration has dropped to 1.50×10−2 M,
dolphi86 [110]

Answer:

Initial concentration of the reactant = 3.34 × 10^(-2)M

Explanation:

Rate of reaction = 2.30×10−4 M/s,

Time of reaction = 80s

Final concentration = 1.50×10−2 M

Initial concentration = Rate of reaction × Time of reaction + Final concentration

= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M

Initial concentration = 3.34 × 10^(-2)M

6 0
2 years ago
Other questions:
  • A 60-kg runner raises his center of mass approximately 0.5 m with each step. Although his leg muscles act as a spring, recapturi
    10·1 answer
  • On the earth, when an astronaut throws a 0.250-kg stone vertically upward, it returns to his hand a time T later. On planet X he
    10·1 answer
  • Calculate the acceleration of a 3000 kg truck that had a net force of 500 N applied to it. Express your answer in m/s^2???
    9·1 answer
  • Please help!! I'm mixed up on the bottom one
    6·1 answer
  • In the unsaturated zone, the pores of the soil are totally filled with water. T or F
    9·1 answer
  • Conduction circulates heat throughout the atmosphere.<br><br><br> True or False<br><br> Help!!
    8·1 answer
  • Mr. Hershman has purchased a farm that is in the shape of a rectangle. The dimensions of the piece of land are 4.3 km by 4.85 km
    14·1 answer
  • An 8.0-ohm resistor and a 6.0-ohm resistor are connected in series with a battery. The potential difference across the 6.0-ohm r
    13·1 answer
  • The upward force exerted on an object falling through air is _____.
    6·1 answer
  • A slingshot is used to shoot a small ball upward into the air; when the pouch is released, the sling propels the ball upward. as
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!