As momentum / time = force
so; time = 100÷15
so your answer is 6.7 !!
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer: 40.650406504065 or 40 minutes and 39 seconds.
Explanation:
1 k = 1000m
race = 10000m
runner time = 10000 / 4.1
runner time = 2439.0243902439024 seconds
runner time = 2439.0243902439024/60 = 40.650406504065 or 40 minutes and 39 seconds.
Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.
<h3>
</h3><h3>What is orbital velocity law?</h3>
The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.
In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.
To know more about orbital velocity law, refer brainly.com/question/11353717
#SPJ4
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M