Here is my step-by-step-work. Let me know if you have any questions! :)
A car of mass 1535 kg collides head-on with a parked truck of mass 2000 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what was the initial speed of the car <u>20kmh</u>
<h3>What is
collision ?</h3>
A collision in physics is any situation in which two or more bodies quickly exert forces on one another. Despite the fact that the most common usage of the word "collision" refers to situations in which two or more objects clash violently, the scientific usage of the word makes no such assumptions.
The following are a few instances of physical encounters that scientists might classify as collisions:
- Legs of an insect are said to collide with a leaf when it falls on one.
- Every contact of a cat's paws with the ground while it strides across a lawn is seen as a collision, as is every brush of its fur with a blade of grass.
To learn more about collision from the given link:
brainly.com/question/27736776
#SPJ4
The coefficient of friction must be 0.196
Explanation:
For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:
where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:
is the coefficient of friction between the tires and the road
m is the mass of the car
is the acceleration of gravity
v is the speed of the car
r is the radius of the curve
In this problem,
r = 750 m is the radius
is the speed
And solving for
, we find the coefficient of friction required to keep the car in circular motion:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Answer:
the work done by the lawnmower is 236.14 J.
Explanation:
Given;
power exerted by the lawnmower engine, P = 19 hp
time in which the power was exerted, t = 1 minute = 60 s.
1 hp = 745.7 watts
The work done by the lawnmower is calculated as follows;

Therefore, the work done by the lawnmower is 236.14 J.