Tin to Fluorine mass ratios:
1) For compound A:
38.5/12.3
= 3.13
2) For compound B:
56.5/36.2
= 1.56
The lowest whole number mass ratio is 2. It cannot be 1 because it is less than that required for compound B.
Answer:
The reactions free energy 
Explanation:
From the question we are told that
The pressure of (NO) is 
The pressure of (Cl) gas is 
The pressure of nitrosly chloride (NOCl) is 
The reaction is
⇆ 
From the reaction we can mathematically evaluate the
(Standard state free energy ) as

The Standard state free energy for NO is constant with a value

The Standard state free energy for
is constant with a value

The Standard state free energy for
is constant with a value

Now substituting this into the equation

The pressure constant is evaluated as

Substituting values


The free energy for this reaction is evaluated as

Where R is gas constant with a value of 
T is temperature in K with a given value of 
Substituting value
![\Delta G = -43 *10^{3} + 8.314 *298 * ln [0.0765]](https://tex.z-dn.net/?f=%5CDelta%20%20G%20%20%3D%20-43%20%2A10%5E%7B3%7D%20%2B%208.314%20%2A298%20%2A%20ln%20%5B0.0765%5D)


Answer:
C₆H₆
Explanation:
We need to find the molecular formula of a compound of carbon (C) and hydrogen (H), so what <em>we need to find out is the number of atoms of C and of H in the molecule.</em> We know:
- molar mass = 78.1 g/mol
- C% = 92.3% = 92.3 g C / 100 g compound
So, in 1 mol of compound, 92.3% of the mass corresponds to Carbon:
<u>mass of C / mol of compound</u> = molar mass × C% = 78.1 g/mol × 92.3/100 = <u>72.1 g/mol</u>
<u>moles of C</u> = mass C / molar mass C = 72.1 g / 12.011 g/mol
moles of C = 6 moles of C per mol of compound
If 72.1 g in a mol of compound are Carbon atoms, the difference between the molar mass and the mass of Carbon atoms will correspond to H atoms in 1 mol of compound:
<u>mass of H / mol of compound</u> = molar mass - mass of C/mol
mass of H = 78.1 g / mol - 72.1 g /mol = <u>6.0 g/mol of compound</u>
<u>moles of H</u> = mass H / molar mass H = 6.0 g / 1.008 g/mol
moles of H = 6.0 moles of H per mol of compound
<em>So</em><em> one mol of compound has 6 moles of C and 6 moles of H.</em>
The molecular formula is then written as C₆H₆
Answer:
C- an explanation as to why you chose your topic
Explanation:
6.7639104*10^0 is the answer.