Are u sure this is the right option? Well, antimony can be decomposed. Including octane.
Answer:
A. power the Calvin cycle.
Explanation:
because it helps to run theblife of plants with easily
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
Look at the images/files below :) Hope it helps Have a great day!
Explanation:
Answer is: a. Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (group 1), in this example rubidium, have lowest ionizations energy and easy remove valence electrons (one electron), they are most reactive metals.
Earth alkaline metals (group 2), in this example strontium, have higher ionization energy than alkaline metals, because they have two valence electrons, they are less reactive.
Rubidium electron configuration: ₃₇Rb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹; one valence electron is 5s¹ orbital.
Strontium electron configuration: ₃₈Sr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s²; two valence electrons is 5s² orbital.