Answer:
The formula to calculate the coefficient of friction is μ = f÷N. The friction force, f, always acts in the opposite direction of the intended or actual motion, but only parallel to the surface.
Answer:
h_f = 15 ft, so option A is correct
Explanation:
The formula for head loss is given by;
h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))
Where;
h_f is head loss due to friction in ft
L is length of pipe in ft
Q is flow rate of water in gpm
C is hazen Williams constant
D is diameter of pipe in inches
We are given;
L = 1,800 ft
Q = 600 gpm
C = 120
D = 8 inches
So, plugging in these values into the equation, we have;
h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))
h_f = 14.896 ft.
So, h_f is approximately 15 ft
Answer:
<em>Option D </em>
<em>Electric meter is used to </em><em>measure</em><em> the amount of electric current</em>
Answer: Fracture will not occur since Kc (32.2 MPa√m) ∠ KIc (35 MPa√m).
Explanation:
in this question we are asked to determine if an aircraft will fracture for a given fracture toughness.
let us begin,
from the question we have that;
stress = 325 MPa
fracture toughness (KIc) = 35 MPa√m
the max internal crack length = 1.0 m
using the formula;
Y = KIc/σ√(πα) ---------------(1)
solving for Y we have;
Y = 35 (MPa√m) / 250 (MPa) √(π × 2×10⁻3/2m)
Y = 2.50
so to calculate the fracture roughness;
Kc = Y × σ√(πα) = 2.5 × 3.25√(π × 1×10⁻³/2) = 32.2 MPa√m
Kc = 32.2 MPa√m
From our results we can say that fracture will not occur since Kc (32.2 MPa√m) is less than KIc (35 MPa√m) of the material.
cheers i hope this helps!!!!