Water molecules forming hydrogen bonds with one another. The partial negative charge on the O of one molecule can form a hydrogen bond with the partial positive charge on the hydrogens of other molecules. Water molecules are also attracted to other polar molecules and to ions.
As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
M(Cs)=133 g/mol
M(O)=16 g/mol
M(CsxOy)=298 g/mol
w(Cs)=0.89
w(O)=0.11
CsxOy
x=M(CsxOy)w(Cs)/M(Cs)
x=298*0.89/133=2
y=M(CsxOy)w(O)/M(O)
y=298*0.11/16=2
Cs₂O₂ cesium peroxide
I do not understand your question, what is the question, name what??