Answer:
2, 4, 1, 3, 5
Explanation:
i believe is this a test
please mark this answer as brainlest i got the answer from someone by the way which is my sis
but forget all of that
please mark brainlest
Answer:
5.67 g OF WATER WILL BE FORMED WHEN 13.7 g OF MnO2 REACTS WITH HCl GAS.
Explanation:
EQUATION FOR THE REACTION
Mn02 + 4HCl --------> MnCl2 + Cl2 + 2H2O
From the balanced reaction between manganese oxide and hydrogen chloride gas;
1 mole of MnO2 reacts to form 2 mole of water
At STP, the molecular mass of the sample is equal to the mole of the substance. So therefore:
(55 + 16 * 2) g of MnO2 reacts to form 2 * ( 1 *2 + 16) g of water
(55 + 32) g of MnO2 reacts to form 2 * 18 g of water
87 g of MnO2 reacts to form 36 g of water
If 13.7 g of MnO2 were to be used?
87 g of MnO2 = 36 g of H2O
13.7 g of MnO2 = ( 13.7 * 36 / 87) g of water
= 493.2 / 87 g of water
Mass of water = 5.669 g of water
Approximately 5.67 g of water will be formed when 13.7 g of manganese oxide reacts with excess hydrogen chloride gas.
Answer:
it woul be 263
Explanation:
becaue it adds up like that
Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
Answer:
See explanation
Explanation:
Before the advent of the wave-particle duality theory proposed by Louis de Broglie, there was a sharp distinction between mater and waves.
However, Louis de Broglie introduced the idea that mater could display wave-like properties. Erwin Schrödinger developed this idea into what is now known as the wave mechanical model of the atom.
In this model, electrons are regarded as waves. We can only determine the probability of finding the electron within certain high probability regions within the atom called orbitals.
This idea has been the longest surviving atomic model and has greatly increased our understanding of atoms.