Answer:
I dont know
Explanation:
I have it for a science final
Ok, I will help you answer but it is very hard to read could you enlarge it first?
Thanks!
<h2>Answer : Option C) Smaller volume - crowded particles - more collisions - high pressure</h2><h3>Explanation : </h3>
The kinetic molecular theory of gases explains that if there is small volume of gas there will be more crowding of the gas molecules inside the container. The crowded gas molecules will collide with each other and also with the walls of container as a result, exchange of energies will take place. Which will increase the pressure inside the container, and will raise the pressure than the initial pressure.
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
The neutralization of the base with an acid will result to the formation of salt and water. In this case, a mole of strong acid will have one halide that will react with the Na atom. Since there are two Na atoms in each of the molecule of Na2HPO4, this will need 2 halide atoms.