Answer and Explanation:
a) The direction is shown in the cube diagram attached to this solution.
b) the angle between two planes (h₁, k₁, l₁) and (h₂, k₂, l₂) is given by the formula,
Cos Φ = (h₁h₂ + k₁k₂ + l₁)/√((h₁² + k₁² + l₁²)(h₂² + k₂² + l₂²))
For (111) and (112)
Cos Φ = (1.1 + 1.1 + 1.2)/√((1² + 1² + 1²)(1² + 1² + 2²))
Cos Φ = (1 + 1 + 2)/√((1+1+1)(1+1+4))
Cos Φ = 4/√(3×6)
Cos Φ = 4/√18
Φ = cos⁻¹ (4/√18) = 19.56°
c) equation 3.3 is missing from the question, I would be back to provide the answers to that as soon as the equation is provided!
Hope this Helps!!
Answer:
1.346 v
Explanation:
1) Fist of all we need to calculate the standard cell potential, one should look up the reduction potentials for the species envolved:
(oxidation)
→
E°=0.337 v
(reduction)
→
E°=1.679 v
(overall)
+8H^{+}_{(aq)}→
E°=1.342 v
2) Nernst Equation
Knowing the standard potential, one calculates the nonstandard potential using the Nernst Equation:
Where 'R' is the molar gas constant, 'T' is the kelvin temperature, 'n' is the number of electrons involved in the reaction and 'F' is the faraday constant.
The problem gives the [red]=0.66M and [ox]=1.69M, just apply to the Nernst Equation to give
E=1.346
<span>differences in the physical properties of the mixture's components</span>
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.