Answer : The enthalpy change for the reaction is 1043 kJ/mol.
Explanation :
The given chemical reaction is:

As we know that:
The enthalpy change of reaction = E(bonds broken) - E(bonds formed)
![\Delta H=[(2\times B.E_{C\equiv O})+(1\times B.E_{O\equiv O})]-[2\times B.E_{C=O}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%282%5Ctimes%20B.E_%7BC%5Cequiv%20O%7D%29%2B%281%5Ctimes%20B.E_%7BO%5Cequiv%20O%7D%29%5D-%5B2%5Ctimes%20B.E_%7BC%3DO%7D%5D)
Given:
= 1074 kJ/mol
= 499 kJ/mol
= 802 kJ/mol
Now put all the given values in the above expression, we get:
![\Delta H=[(2\times 1074kJ/mol)+(1\times 499kJ/mol)]-[2\times 802kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%282%5Ctimes%201074kJ%2Fmol%29%2B%281%5Ctimes%20499kJ%2Fmol%29%5D-%5B2%5Ctimes%20802kJ%2Fmol%5D)

Therefore, the enthalpy change for the reaction is 1043 kJ/mol.
I did it for you I was at my moms and my dad and my mom and I were talking to
They are directly proportional to each other, in other words, when temperature of an object increases, the motion of it's particles also increases
Hope this helps!
it would be B because warm humid air+cool land=fog
To determine the strength of potassium permanganate with a standard solution of oxalic acid.