Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
The periodic table is a table that arranges elements based on their atomic numbers into groups and periods.
The groups are the vertical arrangement of elements. All elements in a group share similar chemical properties because they have the same number of elements in their valence shell. The periodic table groups are:
Group Other names
1A or 1 Alkali metals
IIA or 2 Alkaline earth metals
IIIA or 3 Boron family
VIA or 6 Chalcogens
VIIA or 17 Halogens
O-18 Inert elements
IIIB-IIB Transition elements
There are 18 vertical columns divided into 8 tall groups or main groups which are 1A to O. The short groups or subgroups are from numerals 1B to VIII.
The periodic table can be divided into four blocks based on the type of sublevels their valence electrons occupy.
- Group IA and IIA constitute the s-block
- Group IIIA to O constitute the p-block
- The transition elements makes up the d-block
- The lanthanides and actinides makes up the f-block
Learn more:
Periodic table brainly.com/question/2014634
#learnwithBrainly
Answer:
The frequency of the photon is 7.41*10¹⁶ Hz
Explanation:
Planck states that light is made up of photons, whose energy is directly proportional to the frequency of radiation, according to a constant of proportionality, h, which is called Planck's constant. This is expressed by:
E = h*v
where E is the energy, h the Planck constant (whose value is 6.63*10⁻³⁴ J.s) and v the frequency (Hz or s⁻¹).
So the frequency will be:

Being E= 4.91*10⁻¹⁷ J and replacing:

You can get:
v= 7.41*10¹⁶
= 7.41*10¹⁶ Hz
<u><em>The frequency of the photon is 7.41*10¹⁶ Hz</em></u>
<u><em></em></u>