Answer:
2.55 moles
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
The reaction uses B) 9.0 g Br₂.
iron + bromine ⟶ product
2.0 g + <em>x</em> g ⟶ 11.0 g
According to the <em>Law of Conservation of Mass</em>, the total mass of the reactants must equal the total mass of the products.
∴2.0 + <em>x</em> = 11.0
<em>x</em> = 11.0 – 2.0 = 9.0
The reaction uses 9.0 g Br₂.
Answer:
V₂ = 648.53 mL
Explanation:
Given data:
Initial volume of gas = 490. mL
Initial temperature = -35°C (-35 + 273 = 238 k)
Final temperature = 42°C = (42+273 = 315 k)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 490 mL × 315 K / 238 k
V₂ = 154350 mL.K / 238 K
V₂ = 648.53 mL
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
1) 0.89% m/v = 0.89 grams of NaCl / 100 ml of solution
=> 8.9 grams of NaCl in 1000 ml of solution = 8.9 grams of NaCl in 1 liter of solution
2) Molarity = M = number of moles of solute / liters of solution
=> calculate the number of moles of 8.9 grams of NaCl
3) molar mass of NaCl = 23.0 g /mol + 35.5 g/mol = 58.5 g / mol
4) number of moles of NaCl = mass / molar mass = 8.9 g / 58.5 g / mol = 0.152 mol
5) M = 0.152 mol NaCl / 1 liter solution = 0.152 M
Answer: 0.152 M