Answer:
Transport layer
Explanation:
The transport layer is responsible for maintaining end to end communication between devices connected on a network.
The TCP/IP determines how data is exchanged between devices connected on a network by providing end to end communications that determines how it should be broken into packets.
Answer:
This is the complete correct program:
#include <stdio.h>
#include<sys/types.h>
#include<unistd.h>
int value = 128;
int main()
{
pid_t pid;
pid=fork();
if (pid==0) /* child process */
{
value +=8;
return 0; }
else if (pid > 0) {/* parent process */
wait (NULL);
printf ("PARENT: value =%d\n" ,value); /* LINEA */
return 0;
}
}
The output of the LINE A is:
PARENT: value = 128
Explanation:
The fork() function used in the program creates a new process and this process is the child process. The child process is same as the original process having its own address space or memory.
In the child process the value of pid is 0. So the if condition checks if pid==0. Then the child process adds 8 to the value of its variable according to the following statement
value +=8;
Now the original process has value = 128. In else if part the parents process has the value of pid greater than zero and this portion of the program is of the parent process :
else if (pid > 0)
{ wait (NULL);
printf ("PARENT: value =%d\n" ,value);
return 0; }
So the value 128 is printed at the end in the output.
wait(NULL) is used to wait for the child process to terminate so the parent process waits untill child process completes.
So the conclusion is that even if the value of the variable pid is changed in the child process but it will not affect the value in the variable of the parent process.
Answer:
Streaming movies may stop to buffer
Explanation:
microphones have a set record limit, and games downloaded wont generate errors unless something in the code is wrong, printers don't really need to connect to internet to work except for some, and streaming movies buffer because as you are watching them it downloads the next few minutes.
Answer:
When a programmer tries to access an item in an array cell whose index is greater than or equal to the array's logical size, this data element or item is garbage. This means that currently, the item is not the part of the program's useful data. Garbage contains objects or data which will not be used by a program running on it. So the value returned could be either of the two:
- Value would be an arbitrary or random number if it is an array of numbers. Arbitrary means that the value is not predefined or specified in advance.
- Value returned would be null if it is an array of objects.
Answer:
Explanation:
When most non-technical people hear the term “seven layers”, they either think of the popular Super Bowl bean dip or they mistakenly think about the seven layers of Hell, courtesy of Dante’s Inferno (there are nine). For IT professionals, the seven layers refer to the Open Systems Interconnection (OSI) model, a conceptual framework that describes the functions of a networking or telecommunication system.
The model uses layers to help give a visual description of what is going on with a particular networking system. This can help network managers narrow down problems (Is it a physical issue or something with the application?), as well as computer programmers (when developing an application, which other layers does it need to work with?). Tech vendors selling new products will often refer to the OSI model to help customers understand which layer their products work with or whether it works “across the stack”.
Layer 7 - Application
To further our bean dip analogy, the Application Layer is the one at the top--it’s what most users see. In the OSI model, this is the layer that is the “closest to the end user”. It receives information directly from users and displays incoming data it to the user. Oddly enough, applications themselves do not reside at the application layer. Instead the layer facilitates communication through lower layers in order to establish connections with applications at the other end. Web browsers (Google Chrome, Firefox, Safari, etc.) TelNet, and FTP, are examples of communications that rely on Layer 7.
Layer 6 - Presentation
The Presentation Layer represents the area that is independent of data representation at the application layer. In general, it represents the preparation or translation of application format to network format, or from network formatting to application format. In other words, the layer “presents” data for the application or the network. A good example of this is encryption and decryption of data for secure transmission - this happens at Layer 6.