Answer:

Explanation:
From the question we are told that:
Height 
Radius 
Height of water 
Gravity 
Density of water 
Generally the equation for Volume of water is mathematically given by


Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by

Substituting dv


Therefore




![W=3420.84*0.25[2401-65536]](https://tex.z-dn.net/?f=W%3D3420.84%2A0.25%5B2401-65536%5D)


'
'
answer is the color white
Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107
Answer:
The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).
Explanation:
I hope it will help you