1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
9

How does the circuit change when the wire is added?

Physics
2 answers:
myrzilka [38]3 years ago
4 0
If there is more wire, there will be more resistance, the type of wire will also effect how much the resistance is effected, i hope this helps
ziro4ka [17]3 years ago
4 0
It depends but it will work better
You might be interested in
The effective nuclear charge experienced by the outermost electron of Na is different than the effective nuclear charge experien
Nesterboy [21]

Answer:

B) Na has a lower first ionization energy than Ne.  

Explanation:

The atomic number¹ for Na has a value of 11 while in the case of Ne this value is 10. That means that Sodium (Na) has a total number of 11 protons, 11 neutrons and 11 electrons (since it is electrically neutral²). For the case of Neon (Ne) it has 10 protons, 10 neutrons and 10 electrons.

As the atomic number increases, the atomic radius³ shrinks (the orbitals are closer to the nucleus) as a consequence of the electric force. For the case of sodium (Na) the electron in the outermost orbital will experience a lower electric force than the electron placed in the outermost orbital in the atom of Neon (Ne).

Although, the sodium’s atom has more protons and therefore electrons, these eleven electrons will be organized according with the electronic configuration⁴ in the different shells (orbitals) of probabilities of their positions around the atom.

The electronic configuration for Na is:

1s²2s²2p⁶3s¹

The electronic configuration for Ne is:

1s²2s²2p⁶

Since Na needs another orbital to placed its outermost electron, the atomic radius will have a greater value than Ne. The electric force is inversely proportional to the square of the distance between two charged particles, as is established in Coulomb’s law:

F = \kappa_{0} \frac{q1q2}{r^{2}}    (1)

Where q1 and q2 are the charges, \kappa_{0} is the proportionality constant and r is the distance between the two charges.

Hence, the electron in the outermost orbital of Ne is submitted to a greater electric force according with equation 1, the required energy to remove it (ionization energy⁵) will be greater than in the case of Na (<u>for that case will be the first ionization energy</u>).

¹Atomic number: The number of protons or electrons in an atom.

²Electricaly neutral: All the charges are balanced (same number of positive charges and negative charges).

³Atomic radius: Distance between the center of the nucleus and an electron placed in the outermost orbital for a specific atom.

⁴Electronic configuration: Show how the electrons of an atom will be arranged in different orbitals according with the fact that each orbital has a specific number of electrons that can be held.

⁵Ionization energy: Energy required to remove an electron from an atom.

Key values:

First ionization energy of Na: 495 kJ/mol

First ionization energy of Ne: 2080 kJ/mol

Atomic radius of Na: 2.27 Å

Atomic radius of Ne: 1.54 Å

Atomic number of Na: 11

Atomic number of Ne: 10

3 0
2 years ago
Read 2 more answers
Maggie completed a 10000-m race at an average speed of 160
Gala2k [10]

Answer: 200m/min

Explanation:

Divide 10000m by 160m/min, you will get the answer 62.5. You then subtract 12.5 from 62.5 to understand what you will need your answer for the other person’s speed will be. 10000m divided by 50min is 200m/min.

3 0
3 years ago
A flute player hears four beats per second when she compares her note to a 523 HzHz tuning fork (the note C). She can match the
laiz [17]

Answer:

527 Hz

Solution:

As per the question:

Beat frequency of the player, \Delta f = 4\ beats/s

Frequency of the tuning fork, f = 523 Hz

Now,

The initial frequency can be calculated as:

\Delta f = f - f_{i}

f_{i} = f \pm \Delta f

when

f_{i} = f + \Delta f = 523 + 4 = 527 Hz

when

f_{i} = f - \Delta f = 523 - 4 = 519 Hz

But we know that as the length of the flute increases the frequency decreases

Hence, the initial frequency must be 527 Hz

7 0
3 years ago
Read 2 more answers
Which is not an example of a force?
NNADVOKAT [17]

Answer:

possibly A?

Explanation:

just feels right man

7 0
2 years ago
Two charges, X and Y, are placed along the x-axis. Charge X is +18 nC and is placed at x = 0. Charge Y is placed at a location o
Helen [10]

Answer:

Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m.

Explanation:

The Coulomb force between two charges, Q_1 and Q_2, separated by a distance, d, is given

F = k\dfrac{Q_1Q_2}{r^2}

<em>k</em> is a constant.

For the charge Z to be at equilibrium, the force exerted on it by charge X must be equal and opposite to the force exerted on it by charge Y.

It is to be placed along the <em>x</em>-axis. Hence, it is on the same line as charges X and Y.

Let the charge on Z be <em>Q</em>. It is positive.

Let the distance from charge X be <em>x m.</em> Then the distance from charge Y will be (0.60 - <em>x</em>) m.

Force due to charge X

F_X = k\dfrac{18Q}{x^2}

Force due to charge Y

F_Y = k\dfrac{-27Q}{(0.60-x)^2}

Since both forces are equal and opposite,

F_X = -F_Y

k\dfrac{18Q}{x^2} = -k\dfrac{-27Q}{(0.60-x)^2}

\dfrac{2}{x^2} = \dfrac{3}{(0.60-x)^2}

2(0.60-x)^2 = 3x^2

2(0.36-1.20x+x^2) = 3x^2

0.72-2.40x+2x^2 = 3x^2

x^2+2.40x-0.72 = 0

Applying the quadratic formula,

x = \dfrac{-2.40\pm\sqrt{2.40^2 - (4)(1)(-0.72)}}{2} = \dfrac{-2.40\pm\sqrt{8.64}}{2}

x = -2.7 or x = 0.27

Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m

3 0
3 years ago
Other questions:
  • Before there was central heating, hot water bottles were used to keep people warm at night. These flat containers were filled wi
    13·1 answer
  • A man inside an insulated metallic cage does not receive shock when the cage is highly charge .explain.
    7·1 answer
  • You have a spring with k = 640 N/m connected to a mass with m = 10 kg. You start the system oscillating and measure the velocity
    12·1 answer
  • Which of these statements partially defines law?
    5·1 answer
  • High-frequency sound waves are to ______ as low-frequency sound waves are to ______.
    12·1 answer
  • HELP ASAP! GIVING BRAINLIEST
    10·2 answers
  • A 40.0 kg wheel, essentially a thin hoop with radius 0.810 m, is rotating at 438 rev/min. It must be brought to a stop in 21.0 s
    9·2 answers
  • What types of energy is used to make a lamp work
    9·1 answer
  • Consider going around a horizontal turn to the right. If the coaster suddenly slipped off the track, what path would it follow?
    13·1 answer
  • The acceleration of the object may be zero and the velocity of the object may not be equal to zero correct or not
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!