
☃️ Chemical formulae ➝ 
<h3>
<u>How to find?</u></h3>
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

<h3>
<u>Solution:</u></h3>
Atomic weight of elements:
Ca = 40
C = 12
O = 16
❍ Molecular weight of 
= 40 + 12 + 3 × 16
= 52 + 48
= 100 g/mol
❍ Given weight: 10 g
Then, no. of moles,
⇛ No. of moles = 10 g / 100 g mol‐¹
⇛ No. of moles = 0.1 moles
☄ No. of moles of Calcium carbonate in that substance = <u>0.1 moles</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
0.85 mol/L.
Explanation:
- Molarity is defined as the no. of moles of solute dissolved in a liter of the solution.
<em>M = (no. of moles of solute)/(Volume of the solution (L))</em>
no. of moles of calcium phosphate = 2.125 mol.
Volume of the solution = 2.5 L.
<em>∴ M of calcium phosphate</em> = (2.125 mol)/(2.5 L) = <em>0.85 mol/L.</em>
Answer: ORGANIC ACIDS
Explanation:
CAM PLANTS CARBOXYLATE ORGANICS ACIDS through the addition of CO2 to PEP Carboxylase( a phosphoenolpyruvate carboxylase enzyme present in the mesophyll cells of the cytoplasm in a green plant) to produce Oxaloacetate (organic compound).
CO2 + PEP ⇒ C4H4O5 (oxaloacetate)
Oxaloacetate is then converted to a similar molecule, Malate (C4H6O5, another form of organic compound) that can be transported in to the bundle-sheath cells. Malate enters the plasmodesmata and releases the CO2. The CO2 then fixed by rubisco and made into sugars via the Calvin cycle.
<span>D. The average kinetic energy of their particles is the same.</span>
Answer:
Hoyle believed that as new matter forms,