Since the choices are missing, I will tell you why non-metals tend to form covalent bonds. You can then link this answer to the best fit choice.
Ionic bond is only formed due to an electrostatic attraction force between ions of opposite charges which cannot happen in case of non-metals whose ions are mostly anions.
On the other hand, a covalent bond is formed due to electrons being shared among different atoms. This conditions is satisfied for the bonds between non-metals
This isn't a full question!
Answer:
(3) 5.36
Explanation:
Since this is a titration of a weak acid before reaching equivalence point, we will have effectively a buffer solution. Then we can use the Henderson-Hasselbalch equation to answer this question.
The reaction is:
HAc + NaOH ⇒ NaAc + H₂O
V NaOH = 40 mL x 1 L/1000 mL = 0.040 L
mol NaOH reacted with HAc = 0.040 L x 0.05 mol/L = 0.002 mol
mol HAC originally present = 0.050 L x 0.05 mol/L = 0.0025 mol
mol HAc left after reaction = 0.0025 - 0.002 = 0.0005
Now that we have calculated the quantities of the weak acid and its conjugate base in the buffer, we just plug the values into the equation
pH = pKa + log ((Ac⁻)/(HAc))
(Notice we do not have to calculate the molarities of Ac⁻ and HAc because the volumes cancel in the quotient)
pH = -log (1.75 x 10⁻⁵) + log (0.002/0.0005) = 5.36
THe answer is 5.36
Answer:
a. Concave down
Linear increasing
b. Increases the reaction rate
c. The reaction approaches the saturation point of the enzyme
Explanation:
a. For the reaction with enzyme, the shape is concave down. The action of the enzyme on the preferred substrate is initially very rapid and decreases as the enzyme becomes saturated and the ratio of products to substrate increases to approach an equilibrium rate of reaction
For the reaction without enzyme, the shape is linear and increasing. Increase in the concentration of the substrate will increase the number of effective collisions that lead into product formation leading to an increased rate of the chemical reaction
b. The enzyme increases the proportion of effective combination of substrates to form the products
c. The curve of the reaction with enzyme flattens out because as the concentration of the substrate increases while that of the enzyme remains the same, the enzyme becomes saturated and less able to increase the rate of the reaction of the excess substrate.