Answer:
m₂ = 3kg
Explanation:
The question wasn't clear about what direction the initial velocity of the second cart was, so I'll assume it was going left at 2.0m/s.
Anyway, this is a conservation of momentum problem. The equation you need to use is the one written in blue. They want you to solve for the mass of the second cart, so do some algebra and rearrange that blue equation in term of m₂.
Now that you have the equation for m₂, plug in all the values given from the question and you'll get 3kg.
Acceleration is defined as the rate of change of velocity, which, simply put, is a mouthful to describe how fast something speeds up, slows down, or turns. The equation for acceleration is
a = Δv / Δt,
or your final velocity - your starting velocity, then divided by the amount of time. It can also be expressed as
a = (Vf - Vi) / t,
Where Vf is your final velocity, Vi is your initial velocity, and t is the time traveled.
The question gives us that the helicopter moves from a starting velocity of 30 m/s to a final velocity of 40 m/s in the span of 5 seconds. This means we can fill in the variables to the equation, where
Vf = 40,
Vi = 30, and
t = 5.
Plug these known variables into the original equation, and we get
a = (Vf - Vi) / t = (40 - 30) / 5.
From here, the answer comes down to 10 / 5, or 2 m/s^2.
Hope this helps! If you have any questions, don't hesitate to ask :D
Explanation:
that the people closer too the head of the table will feel more vibrations than the people at the end of the table. since the vibrations will slow down as they travel farther down the table
Hope this helps!!
Answer:
The value of variable capacitor is
F
Explanation:
Given :
Inductance
H
Frequency
Hz
According to the cutoff frequency,

Now we find the value of capacitance,


F
Therefore, the value of variable capacitor is
F