Answer:
The acceleration of the satellite is 
Explanation:
The acceleration in a circular motion is defined as:
(1)
Where a is the centripetal acceleration, v the velocity and r is the radius.
The equation of the orbital velocity is defined as
(2)
Where r is the radius and T is the period
For this particular case, the radius will be the sum of the high of the satellite (
) and the Earth radius (
) :


Then, equation 2 can be used:
⇒ 


Finally equation 1 can be used:

Hence, the acceleration of the satellite is 
<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
The F Ring, the Cassini Division, and the C Ring are bright ring features. They are bright due to the low concentration of materials within them, which allows sunlight to shine through.
Answer:
Technically everything has somewhat of a magnetic field. I guess
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.