Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:

Explanation:
Not considering any type of losses in the transformer, the input power in the primary is equal to the output power in the secondary:

So:

Where:

Solving for 

Replacing the data provided:

Answer:
Explanation:
There is no change in mass. Therefore, mass = 70
k
g
Weight on Jupiter ≈ 1578 N