Answer:
It’s 7 hours
Explanation:
You have to use the formula your teacher has given to you plug in the numbers then solve be sure to use a calculator made for physics it helps a lot :)
Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Answer:
B: Energy that is transformed is neither created or destroyed
Explanation:
The work done by the turbine will be 708.2 kJ/kg. The work done by the turbine is the difference of the enthalpy at inlet and exit.
<h3 /><h3>What is temperature?</h3>
Temperature directs the hotness or coldness of a body. In clear terms, it is the method of finding the kinetic energy of particles within an entity. Faster the motion of particles, more the temperature.
If the given turbine is assumed to be reversible;
(Initial pressure)=60 mpa = 60 bar
(Initial temperature)=600° C
(Exit pressure)=600 kpa=6 bar
The heat balance equation is;

The change in the entropy is;

The work done by the turbine is;

Hence,the work done by the turbine will be 708.2 kJ/kg.
To learn more about the temperature, refer to the link;
brainly.com/question/7510619
#SPJ4