1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
14

A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together

and move 1.97 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.
Physics
1 answer:
viktelen [127]3 years ago
6 0

Answer:

The coefficient of friction between the cars and the road is 0.859.

Explanation:

The two cars collide each other inelastically, then we can determine the resulting velocity by the Principle of Momentum Conservation:

m_{A}\cdot v_{A} + m_{B}\cdot v_{B} = (m_{A} + m_{B})\cdot v (1)

Where:

m_{A}, m_{B} - Masses of the cars, in kilograms.

v_{A}, v_{B} - Initial velocities of the cars, in meters per second.

v - Velocity of the resulting system, in meters per second.

If we know that m_{A} = 2120\,kg, v_{A} = 13.4\,\frac{m}{s }, m_{B} = 2810\,kg and v_{B} = 0\,\frac{m}{s}, then the  velocity of the resulting system:

v = \frac{m_{A}\cdot v_{A}+m_{B}\cdot v_{B}}{m_{A}+m_{B}}

v = \frac{(2120\,kg)\cdot \left(13.4\,\frac{m}{s} \right)+(2810\,kg)\cdot \left(0\,\frac{m}{s} \right)}{2120\,kg + 2810\,kg}

v = 5.762\,\frac{m}{s}

By Principle of Energy Conservation and Work-Energy Theorem, we understand that the initial translational kinetic energy (K), in joules, is dissipated due to work done by friction (W_{f}), in joules, that is to say:

K = W_{f} (2)

\frac{1}{2}\cdot (m_{A}+m_{B})\cdot v^{2} = \mu\cdot (m_{A}+m_{B})\cdot g \cdot s

\frac{1}{2}\cdot v^{2} = \mu \cdot g\cdot s (2b)

Where:

\mu - Coefficient of friction, no unit.

g - Gravitational acceleration, in meters per square second.

s- Travelled distance, in meters.

If we know that v = 5.762\,\frac{m}{s}, g = 9.807\,\frac{m}{s^{2}} and s = 1.97\,m, then the coefficient of friction is:

\mu = \frac{v^{2}}{2\cdot g\cdot s}

\mu = \frac{\left(5.762\,\frac{m}{s} \right)^{2}}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.97\,m)}

\mu = 0.859

The coefficient of friction between the cars and the road is 0.859.

You might be interested in
Q: The picture above shows a frying pan. Why are frying pans usually made out of metal? 
Natasha_Volkova [10]
A. Because metal is a good conductor of heat.

If a frying pan wasn't a good conductor of heat it's purpose of cooking things wouldn't really be resolved. Without heat it couldn't cook well. I think lol that's my way of thinking.



Hope I helped :)
4 0
3 years ago
Read 2 more answers
Two protons in an atomic nucleus are typically separated by a distance of 2 ✕ 10-15 m. The electric repulsion force between the
castortr0y [4]

Answer:

The magnitude of the electric force between the to protons will be 57.536 N.

Explanation:

We can use Coulomb's law to find out the force, in scalar form, will be:

F \ = \ \frac{1}{4 \pi \epsilon_0 } \frac{q_1 q_2}{d^2}.

Now, making the substitutions

d \ = \ 2.00 * 10 ^{-15} \ m,

q_1 = q_2 = 1.60 * 10 ^ {-19} \ C,

\frac{1}{4\pi\epsilon_0}=8.99 * 10^9 \frac{Nm^2}{C^2},

we can find:

F \ = \ 8.99 * 10^9 \frac{Nm^2}{C^2} \frac{(1.60 * 10 ^ {-19} \ C)^2}{(2.00 * 10 ^{-15} \ m)^2}.

F \ = 57.536 N.

Not so big for everyday life, but enormous for subatomic particles.

4 0
3 years ago
Read 2 more answers
Sam, whose mass is 78 kg , stands at the top of a 11-m-high, 110-m-long snow-covered slope. His skis have a coefficient of kinet
Valentin [98]

Answer:

v = 8.09   m/s

Explanation:

For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.

Let's calculate the energy

       

starting point. Higher

         Em₀ = U = m gh

final point. To go down the slope

         Em_f = K = ½ m v²

The work of the friction force is

         W = fr L cos 180

to find the friction force let's use Newton's second law

Axis y

        N - W_y = 0

        N = W_y

X axis

        Wₓ - fr = ma

let's use trigonometry

        sin  θ = y / L

         sin θ = 11/110 = 0.1

         θ = sin⁻¹  0.1

          θ = 5.74º

         sin 5.74 = Wₓ / W

         cos 5.74 = W_y / W

         Wₓ = W sin 5.74

         W_y = W cos 5.74

the formula for the friction force is

         fr = μ N

         fr = μ W cos θ

Work is friction force is

         W_fr = - μ W L cos θ  

Let's use the relationship of work with energy

        W + ΔU = ΔK

         -μ mg L cos 5.74 + (mgh - 0) = 0  - ½ m v²

        v² = - 2 μ g L cos 5.74 +2 (gh)

        v² = 2gh - 2 μ gL cos 5.74

let's calculate

        v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74

        v² = 215.6 -150.16

        v = √65.44

        v = 8.09   m/s

6 0
3 years ago
Define wheel and axle in science terms
topjm [15]

Answer:

A simple machine consisting of an axle to which a wheel is fastened so that torque applied to the wheel winds a rope or chain onto the axle, yielding a mechanical advantage equal to the ratio of the diameter of the wheel to that of the axle.

5 0
3 years ago
A 1050 W carbon-dioxide laser emits light with a wavelength of 10μm into a 3.0-mm-diameter laser beam. What force does the laser
avanturin [10]

The force exerted by the laser beam on a completely absorbing target is 3.5 \times 10^{-6} \ N.

The given parameters;

  • <em>power of the laser light, P = 1050 W</em>
  • <em>wavelength of the emitted light, λ = 10 μm </em>

The speed of the emitted laser light is given as;

v = 3 x 10⁸ m/s

The force exerted by the laser beam on a completely absorbing target is calculated as follows;

P = Fv

F = \frac{P}{v} \\\\F = \frac{1050}{3\times 10^8} \\\\F = 3.5 \times 10^{-6} \ N

Thus, the force exerted by the laser beam on a completely absorbing target is 3.5 \times 10^{-6} \ N.

Learn more here:brainly.com/question/17328266

3 0
2 years ago
Other questions:
  • A baseball travels 50 meters in 4 seconds what is the average velocity of the baseball?
    11·1 answer
  • What is the system's potential energy when its kinetic energy is equal to 34e?
    14·1 answer
  • 1. A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging on the
    8·1 answer
  • A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 4.00s during which she covers 34.0m. What was her
    11·1 answer
  • A 60-kg swimmer suddenly dives horizontally from a 150-kg raft with a speed of 1.5 m/s. The raft is initially at rest. What is t
    11·1 answer
  • Can someone help me with this I'm-- never mind I would just like help..
    7·2 answers
  • Which part of the scientific method is most likely to lead to changes in a theory? (1 point)
    15·1 answer
  • A sample is brought to the laboratory and it is determined that one-eighth of the original
    12·1 answer
  • 2. In a race, if a runner starts and stops at the same position, what is their<br> displacement? *
    10·1 answer
  • 3. Which of these will remain unchanged when a sound wave travels from the air to water?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!