We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,
But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
Answer:
To convert 400 mm to m you can apply the formula [m] = [mm] / 1000; use 400 for mm. Thus, the conversion 400 mm m is the result of dividing 400 by 1000. 0.4
<em>PLEASE</em><em> </em><em>MARK</em><em> </em><em>AS</em><em> </em><em>BRAINLIEST</em><em> </em><em>ANSWER</em><em> </em>
Answer:
The correct answer is Option A (decrease).
Explanation:
- According to Heisenberg's presumption of unpredictability, it's impossible to ascertain a quantum state viewpoint as well as momentum throughout tandem.
- Also, unless we have accurate estimations throughout the situation, we will have a decreased consistency throughout the velocity as well as vice versa though too.
Other given choices are not connected to the given query. Thus the above is the right answer.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before () and after () the explosion. We will take the east direction as positive.
Before the explosion we have .
After the explosion we have pieces 1 and 2, so .
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:
Which means (since we want and ):
So for our values we have: